Multiple Choice Questions

Q: 1Which of the following is equal to $\tan^{-1}(\frac{2}{3\pi})$?1 $\cot^{-1}(\frac{3\pi}{2})$ 2 $\cot^{-1}(\frac{3\pi}{2})$ 3 $\frac{\pi}{2}$ - $\cot^{-1}(\frac{3\pi}{2})$

Free Response Questions

```
Q: 2 Draw the graph of cos<sup>-1</sup> (2 x ) in the domain \left[-\frac{1}{2}, \frac{1}{2}\right].
```

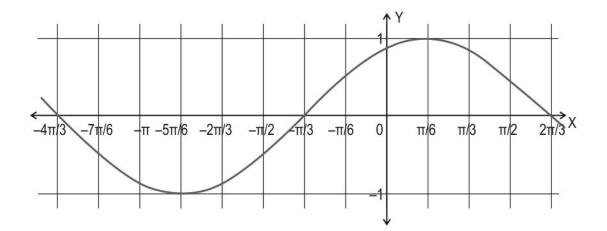
Q: 3 State whether the following statements are true or false. Explain your reasoning. [2]

i) $\cos(\sec(x))^{-1} = \frac{1}{x}$

4 $\frac{\pi}{2}$ + cot⁻¹ ($\frac{3\pi}{2}$)

ii) $\sin^{-1}(-x) + \cos^{-1}(-x) = \sin^{-1}(x) - \cos^{-1}(x)$

Q: 4 Shown below is a portion of the graph for sin (x + a), where $a \in R$ and a > 0. [2]



What should the domain of the function be restricted to such that the function is invertible? Give valid reasons for your answer.

Q: 5 If
$$4x + \frac{1}{x} = 4$$
, $x \in [0, \frac{\pi}{2}]$, find $\cos^{-1} x - \sin^{-1} x$. Show your work. [2]

$$\frac{\mathbf{Q:6}}{2x} \text{ Show that } \cot^{-1}\left(\frac{1-x^2}{2x}\right) + \tan^{-1}\left(\frac{x^3-3x}{1-3x^2}\right) = -\tan^{-1}x.$$
^[3]

>>

R www.studentbro.in

[1]

Q: 7 $f(x) = \cos(2\sin^{-1}x)$ and $g(x) = \sin^2(2\cos^{-1}x)$, $-1 \le x \le 1$.

If h(x) = (f(x) + g(x)), find h(0.1). Show your work.

$$\frac{\mathbf{Q: 8}}{----}$$
 cosec $\theta = \frac{1}{\sin \theta}$

_

For $y \in \mathbb{R}$ where $\operatorname{cosec}^{-1} y$ and $\sin^{-1} y$ are defined, is $\operatorname{cosec}^{-1} y = \frac{1}{\sin^{-1} y}$? If not, write the correct statement.

Q: 9 Find the domain and range of the function $y = \sin^{-1}(|x| - 1)$. Show your work and [3] give valid reasons.

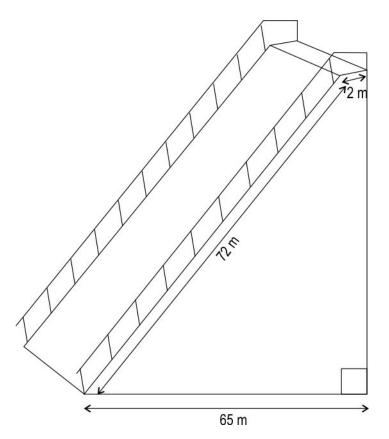
Get More Learning Materials Here : 💶

[3]

Q: 10 As per guidelines issued by the Home Ministry of India, in order for a ramp to be [3] accessible to persons with disability, it must have a minimum slope ratio of 1:12. That is, for every unit of height, there must be at least 12 units of ramp. (Source:

https://www.mha.gov.in/sites/default/files/PublicNoticeforDraftStandards_22112021.pdf)

Abbas measured the dimensions of a ramp at his school and noted them in a rough diagram, as shown in the figure below.



(Note: The figure is not to scale.)

Is the given ramp meeting the Home Ministry's accessibility standards? Justify your answer.

(Note: Assume that the top of the ramp is parallel to the ground.)

<u>Q</u>: 11 Evaluate tan $\left(\frac{1}{2}\cos^{-1}\frac{5}{7}\right)$. Show your work.

[5]

🕀 www.studentbro.in

Case Study

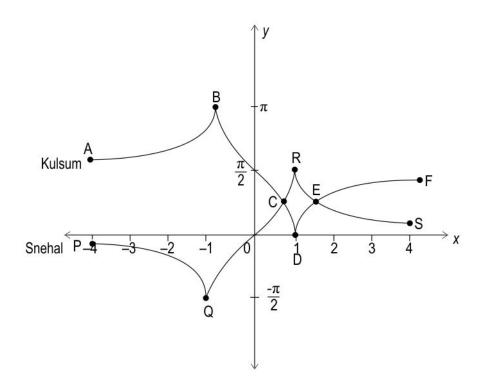
Answer the questions based on the given information.

Madhu created a design on his floor using a combination of graphs of inverse trigonometric functions in the domain [-4, 4]. He also represented the coordinate axes for reference. He asked his friends, Kulsum and Snehal, to choose a path to walk on. Kulsum chose path ABCDEF, while

CLICK HERE

Get More Learning Materials Here : 💶

Snehal chose path PQCRES. They both started walking at the same time and with the same speed.



: 12 Write the range of each of the two functions that Kulsum chose as her path to walk on.		• [2]
Q: 13 The graphs of w chose?	hich of the two functions are combined to form the path that Snehal	[1]
Q: 14 What is the <i>x</i> -co steps.	oordinate of Kulsum's and Snehal's first meeting point? Show your	[2]

Get More Learning Materials Here : 🂵 🧲

The table below gives the correct answer for each multiple-choice question in this test.

Q.No	Correct Answers
1	2

Get More Learning Materials Here : 💶



Q.No	What to look for	Marks
2	Draws the graph of $\cos^{-1} (2 \times)$ in the given domain as follows:	1
3	i) Writes that the given statement is false.	0.5
	Gives reason that (sec(x)) ⁻¹ = $\frac{1}{\sec x}$ and not sec ⁻¹ (x).	0.5
	ii) Writes that the given statement is false.	0.5

Get More Learning Materials Here :

Q.No	What to look for	Marks
	Gives reason that $\sin^{-1}(-x) = -\sin^{-1}(x)$, and $\cos^{-1}(-x) = \cos^{-1}(x)$. So, $\sin^{-1}(-x) + \cos^{-1}(-x) = \cos^{-1}(x) - \sin^{-1}(x)$.	0.5
4	Writes that the domain should be restricted to [$\frac{-5\pi}{6}$, $\frac{\pi}{6}$].	1
	(Award full marks for any domain that satisfies the conditions.)	
	Reasons that if its domain is restricted to [$\frac{-5\pi}{6}$, $\frac{\pi}{6}$], then the function becomes one-one and onto and hence, invertible.	1
5	Rewrites $4x + \frac{1}{x} = 4$ as $(2x - 1)^2 = 0$.	1
	Hence, finds the value of x as $\frac{1}{2}$.	
	Evaluates $\cos^{-1} x - \sin^{-1} x$ as $\frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6}$ or 30°.	1
6	Writes that:	0.5
	$\cot^{-1}\left(\frac{1-x^2}{2x}\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$	
	Takes $x = \tan \theta$. Then $\theta = \tan^{-1} x$.	1.5
	Solves the LHS by substituting the expression from step 1 as follows:	
	$\tan^{-1}\left(\frac{2\tan\theta}{1-\tan^2\theta}\right) + \tan^{-1}\left(\frac{\tan^3\theta - 3\tan\theta}{1-3\tan^2\theta}\right)$	
	$= \tan^{-1}(\tan 2\theta) + \tan^{-1}(-\tan 3\theta)$	
	Finds tan ⁻¹ (-tan (3θ)) = tan ⁻¹ (tan (-3θ)).	0.5
	Simplifies the expression from step 2 as tan ⁻¹ (tan (20)) + tan ⁻¹ (tan (-30)) = $2\theta - 3\theta = -\theta = -\tan^{-1} x$.	0.5

Get More Learning Materials Here :

Q.No	What to look for	Marks
7	Using the formula $\cos 2\theta = 1 - 2\sin^2 2\theta$, writes f (x) as follows:	1
	$\cos(2\sin^{-1}x) = 1 - 2\sin^2(\sin^{-1}x) = 1 - 2x^2$	
	Using the formula sin $2\theta = 2\sin \theta \cos \theta$, writes g (x) as follows:	1
	$sin^{2} (2cos^{-1} x) = 4sin^{2} (cos^{-1} x).cos^{2} (cos^{-1} x)$ = 4 cos ² (cos ⁻¹ x)(1 - cos ² (cos ⁻¹ x)) = 4 x ² (1 - x ²) = 4 x ² - 4 x ⁴	
	Finds h (x) = $(1 - 2x^2) + (4x^2 - 4x^4) = 1 + 2x^2 - 4x^4$	0.5
	Calculates <i>h</i> (0.1) as 1 + 2(0.1) ² - 4(0.1) ⁴ = 1.0204	0.5
8		1.5
	Writes:	
	$\csc^{-1} y = x$	
	$\Rightarrow \operatorname{cosec} X = Y$ $\Rightarrow \frac{1}{\sin x} = Y$	
	$\Rightarrow \sin x = \frac{1}{y}$	
	$\Rightarrow \sin^{-1} \frac{1}{\gamma} = x = \operatorname{cosec}^{-1} \gamma$	
		1.5
	Uses the given relation and the above step to write:	1.5
	$\sin^{-1}\frac{1}{y} = \frac{1}{\sin^{-1}y}$ which is not true for $y = 1$.	
	Hence, $\csc^{-1} y = \frac{1}{\sin^{-1} y}$ is not true.	
9	Since the domain of inverse of sine function is [-1, 1], finds the domain of the given function as follows:	1.5
	$-1 \leq x - 1 \leq 1$	
	$=> 0 \le x \le 2$ $=> x \le 2$	
	$=> -2 \le x \le 2$	

Get More Learning Materials Here : 🚅

Q.No	What to look for	Marks
	Concludes the domain of sin ⁻¹ (x - 1) as [-2, 2].	0.5
	Finds the range of the function as an interval of real numbers where sin y is bijective.	0.5
	Some examples are:	
	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right], \left[-\frac{3\pi}{2},-\frac{\pi}{2}\right], \ldots$	
	Gives a valid reason. For example, since sin y is bijective in the domain [- $\frac{\pi}{2}$, $\frac{\pi}{2}$], the range of the given function is [- $\frac{\pi}{2}$, $\frac{\pi}{2}$].	0.5
10	Assumes the angle of inclination of the given ramp as θ .	0.5
	Finds the base length of the given ramp as 63 m, and hence finds θ as cos ⁻¹ $\frac{63}{72} = \cos^{-1}\frac{7}{8}$.	
	Notes that, for a ramp to meet the given accessibility standards, the angle of inclination must be less than or equal to $\sin^{-1}\frac{1}{12}$.	0.5
	Writes sin $\frac{1}{12}$ as follows:	1
	$\sin^{-1}\left(\frac{1}{12}\right) = \cos^{-1}\left(\sqrt{1 - \left(\frac{1}{12}\right)^2}\right)$ $\Rightarrow \sin^{-1}\left(\frac{1}{12}\right) = \cos^{-1}\left(\frac{\sqrt{143}}{12}\right)$	
	Notes that :	1
	$\cos^{-1}\left(rac{7}{8} ight)>\cos^{-1}\left(rac{\sqrt{143}}{12} ight)$	
	Gives a valid reason. For example, the value of cos θ decreases as θ increases, when $0^{\circ} \leq \theta \leq 90^{\circ}$.	
	Concludes that the ramp is not meeting the accessibility standards set by the Home Ministry.	
	(Award no marks if student simply writes that the ramp does not meet the accessibility standards, if no valid reason is given.)	

Get More Learning Materials Here : 📕

Q.No	What to look for	Marks
11	Assumes that $\frac{1}{2}\cos^{-1}\frac{5}{7} = \theta$. Then, $\cos^{-1}\frac{5}{7} = 2\theta$ $\Rightarrow \cos 2\theta = \frac{5}{7}$	0.5
	Writes cos 20 as follows:	1
	$\cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \frac{5}{7}$	
	Solves the equation from step 3 to get:	1
	$\tan^2 \theta = \frac{1}{6}$ $\Rightarrow \tan \theta = \left(\sqrt{\frac{1}{6}}\right) \text{ or } \left(-\sqrt{\frac{1}{6}}\right)$	
	Writes that $0 \le \cos^{-1} \frac{5}{7} \le \pi$. $\Rightarrow 0 \le \frac{1}{2} \cos^{-1} \frac{5}{7} \le \frac{\pi}{2}$ $\Rightarrow 0 \le \tan \theta \le \infty$	2
	Rejects the negative value for tan θ , and writes that:	0.5
	$\tan\theta = \frac{1}{\sqrt{6}}$	
12	Identifies two functions that Kulsum chose to walk on as $\cos^{-1}(x)$ and $\sec^{-1}(x)$.	1
	Writes that the range of cos ⁻¹ (x) is [0, π].	0.5
	Writes that the range of sec ⁻¹ (x) is [0, π] - $\frac{\pi}{2}$.	0.5
13	Identifies the trigonometric functions that Snehal chose to walk on as sin ⁻¹ (x) and cosec ⁻¹ (x).	1

Get More Learning Materials Here : 🗾

Q.No	What to look for	Marks
14	Mentions that both friends met at point C which is the point of intersection of two functions, sin ⁻¹ (x) and cos ⁻¹ (x) and writes:	0.5
	$\cos^{-1}(x) = \sin^{-1}(x)$	
	Simplifies the above equation as:	1
	$\cos(\cos^{-1}(x)) = \cos(\sin^{-1}(x))$	
	$=> x = \cos(\sin^{-1}(x))$	
	Substitutes sin ⁻¹ (x) as u and simplifies the above equation as:	
	$\sin u = \cos u$	
	$=>\sin u=\sin(\frac{\pi}{2}-u)$	
	$\Rightarrow u = \frac{\pi}{4}$	
	(Award full marks if cos ⁻¹ (x) and sin ⁻¹ (x) are shown to be equal at $y = \frac{\pi}{4}$ directly.)	
	Finds the x -coordinate of Kulsum's and Snehal's first meeting point as: $x = \sin x = \sin (\pi) = \frac{1}{2}$	0.5
	$x = \sin u = \sin (\frac{\pi}{4}) = \frac{1}{\sqrt{2}}$	

